Quantum theory on Lobatchevski spaces
نویسندگان
چکیده
منابع مشابه
Quantum group gauge theory on quantum spaces
We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SUq(2) . The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector...
متن کاملQuantum Group Gauge Theory on Classical Spaces
We study the quantum group gauge theory developed elsewhere in the limit when the base space (spacetime) is a classical space rather than a general quantum space. We show that this limit of the theory for gauge quantum group Uq(g) is isomorphic to usual gauge theory with Lie algebra g. Thus a new kind of gauge theory is not obtained in this way, although we do find some differences in the coupl...
متن کاملQuantum Field Theory on Noncommutative Spaces ∗
A pedagogical and self-contained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the Weyl-Wigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative Yang-Mills theory on infinite space and on the torus, Morita equivalences of noncommutative ...
متن کاملQuantum theory without Hilbert spaces
Quantum theory does not only predict probabilities, but also relative phases for any experiment, that involves measurements of an ensemble of systems at different moments of time. We argue, that any operational formulation of quantum theory needs an algebra of observables and an object that incorporates the information about relative phases and probabilities. The latter is the (de)coherence fun...
متن کاملNon-Abelian Gauge Theory on q-Quantum Spaces
Gauge theories on q-deformed spaces are constructed using covariant derivatives. For this purpose a “vielbein” is introduced, which transforms under gauge transformations. The non-Abelian case is treated by establishing a connection to gauge theories on commutative spaces, i.e. by a Seiberg-Witten map. As an example we consider the Manin plane. Remarks are made concerning the relation between c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Classical and Quantum Gravity
سال: 2007
ISSN: 0264-9381,1361-6382
DOI: 10.1088/0264-9381/24/14/003